

Mobile IP

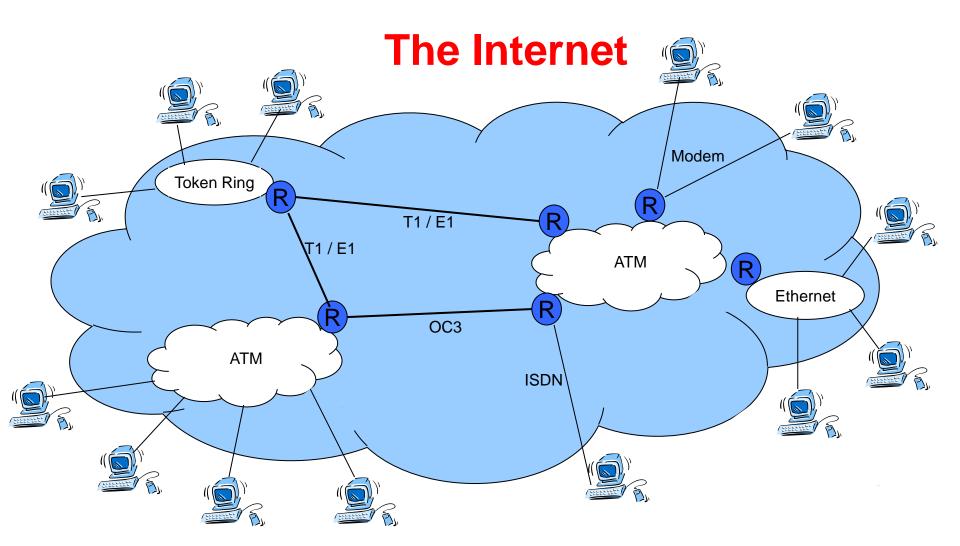
Stefano Ferrari

Outline

Part I: Mobile Internet

- Trends in networks
- Technology
 - 3rd Generation
 Mobile Networks
 - Bluetooth
 - Internet QoS
 - Mobile IP (see part II)
- Applications
- Conclusion

Part II: Mobile IP


- IP Refresher
- Mobile IP Basics
- 3 parts of Mobile IP:
 - Advertising Care-of Addresses
 - Registration
 - Tunneling
- Problems \ extensions
- Mobility for IPv6
- Conclusion

What is the Internet?

- A large collection of networks,
 - of various types (e.g. Ethernet, ATM, POS, modem, IEEE 802.11, Bluetooth),
 - broadcast as well as point-to-point,
 - at various speeds (kbit/s Gbit/s),
- interconnected by routers,
 - all acting on a common protocol: IP,
- with applications running on the end systems (hosts),
 - using either TCP or UDP as a transport protocol,
 - example applications are WWW (using http), email (smtp / pop3 / imap), news (nntp), telnet, ftp.

Internet Protocol Stack

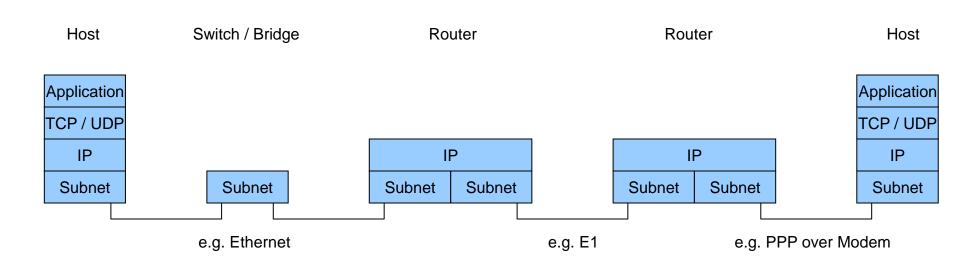
Application

Telnet, FTP, HTTP, SMTP, POP3, IMAP, NNTP

Transport

TCP, UDP

Network


IP, ICMP

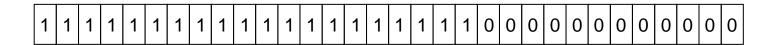
Link

device driver and interface card

The Internet (2)

IP Addresses

- 4 bytes
- Dotted decimal notation, e.g., 130.89.16.82


Address Classes:

Class A	0 netid (7 bits)	hostid (24 bits)		
Class B	1 0 netid	(14 bits) hostid (16 bits)		16 bits)
Class C	1 1 0	netid (21 bits)		hostid (8 bits)

IP Addresses (2)

Subnet Mask

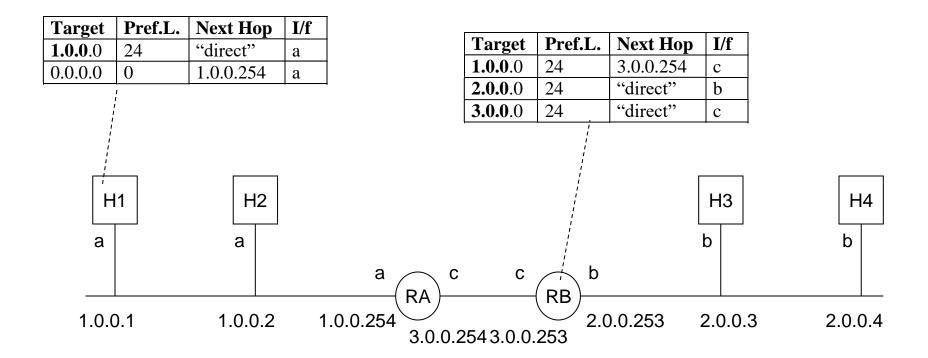
IP Address

network prefix host

Prefix Length

How to obtain an IP Address

- Manually
- Automatically
 - PPP (Point-to-Point Protocol) / IPCP (IP Control Protocol)
 - BOOTP (Bootstrap Protocol)
 - DHCP (Dynamic Host Configuration Protocol)


Routing Table

Target	Prefix Length	Next Hop	Interface
7.7.7.99	32	router 1	a
7.7.7 .0	24	router 2	a
0.0.0.0	0	router 3	a

Example: Destination Address = 7.7.7.1

Routing Example

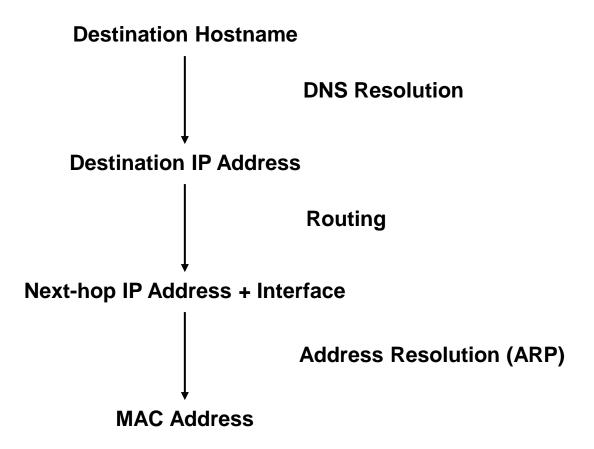
Levels of addresses in the Internet

Domain name (DNS address)

a location independent identifier of a host utip145.cs.utwente.nl

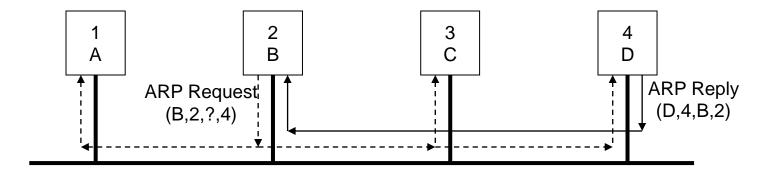
Internet address (IP address)

the logical location of a host (interface) I.e., (sub)network id followed by host id


130.89.16.82

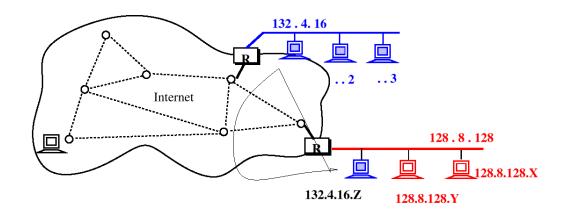
Physical address (MAC address)

the hardware address of an interface card 00 a4 24 4a 82 07


Address Resolution

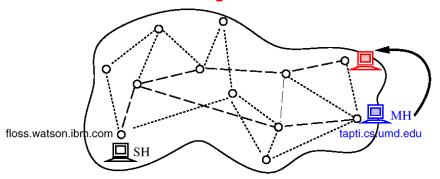
ARP

- ARP: Address Resolution Protocol
- Used to find (Physical) MAC address if IP address is known
- ARP Request is a broadcast
- ARP Reply is returned to requester


Proxy ARP and Gratuitous ARP

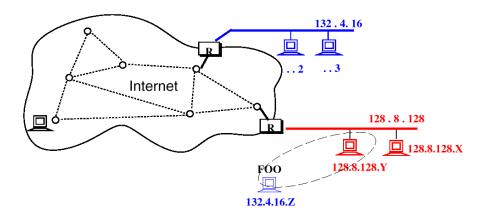
- Proxy ARP: Proxy Replies to ARP requests on behalf of other host, giving its own MAC address
- Gratuitous ARP: Host broadcasts a not requested ARP

21-03-08


Routing in the Internet

- Packets flow from link (subnetwork) to link via routers
- Packets are routed individually, based on their IP addresses (not on DNS name)
- Routing is based on the (sub)network prefix of the IP address
- A mobile host must be assigned a new address when it
 moves
 Stefano Ferrari

Connections between Internet computers



Connection := <129.34.16.43, sh_port #, 128.8.128.45, mh_port #>

- TCP connections are defined by source and destination IP addresses and port numbers
- Change of host address would cause the connection to break
- » Host address must be preserved regardless of a hosts location

The Mobile IP problem

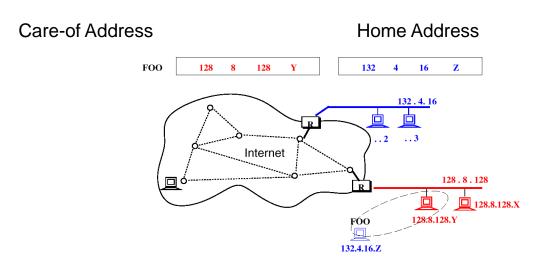
A mobile host must be assigned a new address when it moves

«»

Host address must be preserved regardless of a hosts location

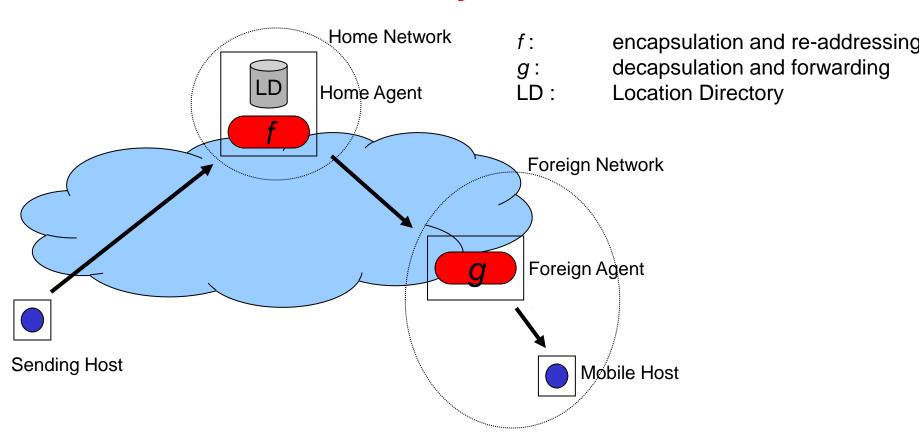
Why Mobility at the Network (IP) Layer?

- Network layer is present in all Internet nodes
- Network layer is responsible for routing packets to the proper location
- Mobility across the entire Internet, even changing physical medium is possible
- Application transparent
- Universal solution for all applications

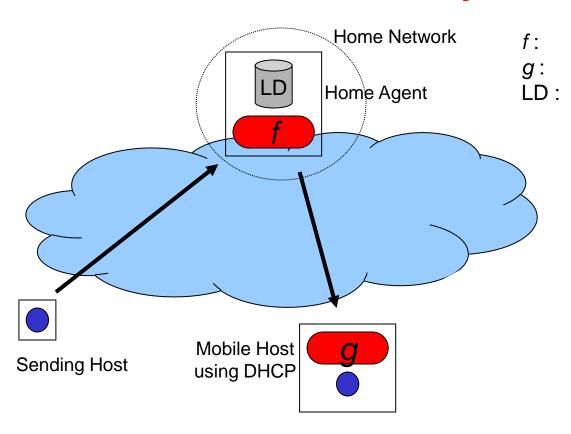


Design constraints for Mobile IP

- Interoperability with the TCP/IP protocol suite
- Existing networking applications should run unmodified on mobile hosts
- System should provide Internet wide mobility
- No modifications to existing routing infrastructure required
- No modifications to existing protocols required
- Independence of wireless hardware technology
- Good scaling properties


Mobile IP: Basics

- A mobile host keeps its home address, but on a foreign network, it borrows a care-of address
- Mobile IP takes care of all issue related to the mapping of the care-of address to the home address



Mobility Model

Mobility Model

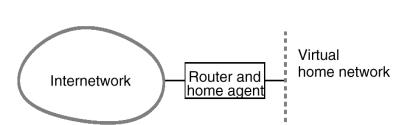
encapsulation and re-addressing decapsulation and forwarding Location Directory

Types of Home Networks

Internetwork

 Home agent as a separate system on the home network Physical home network

Home agent


Physical

Router and

home agent

home network

 Home agent integrated with a router on the home network

 A virtual home network

3 Parts of Mobile IP

- Advertising Care-of Addresses
- Registration
- Tunneling

Advertising Care-of Addresses

A mobility agent is either a foreign agent or a home agent or both

- Mobility agents broadcast agent advertisements (ICMP messages)
- Mobile hosts can solicit for an advertisement
- Advertisements contain:
 - mobility agent address
 - care-of addresses
 - lifetime
 - flags

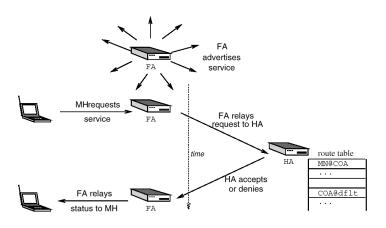
Home Network & Move Detection

Home Network is detected if:

 Network Prefix IP Source Address advertisement = Network Prefix Home Address

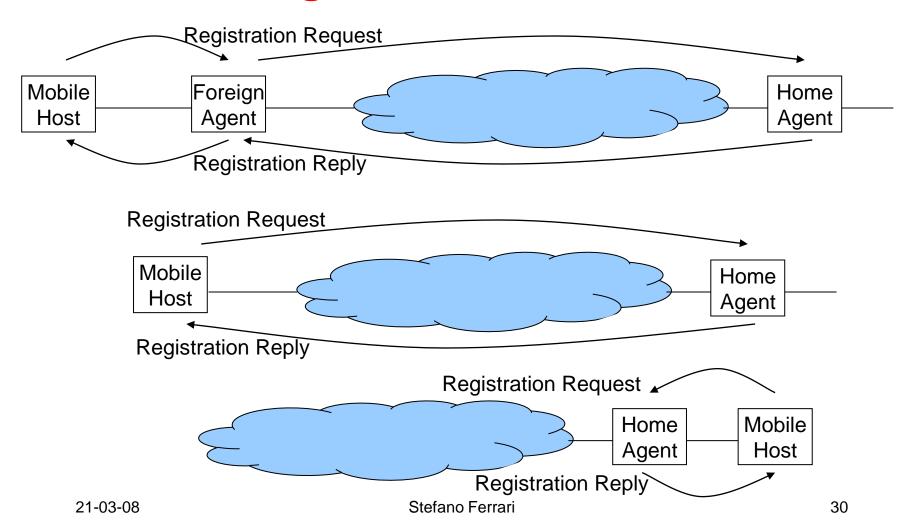
Move is detected if:

- No advertisement has been received within Lifetime
- Network Prefixes have changed no advertisements --> use promiscuous mode assistance from higher / lower layers



3 Parts of Mobile IP

- Advertising Care-of Addresses
- Registration
- Tunneling


Registration

- binding: (home address, care-of address, lifetime)
- registration is needed to update the binding
- registration requires authentication
- registration uses UDP

Registration Scenarios

Simultaneous Bindings

- A Mobile Node may register multiple bindings simultaneously
- The Home Agent makes multiple copies of packets destined for the mobile host, and tunnels a copy to each care-of address
- Simultaneous bindings may be used to
 - facilitate seamless hand-off
 - avoid too frequent registrations

Home Agent Address Discovery

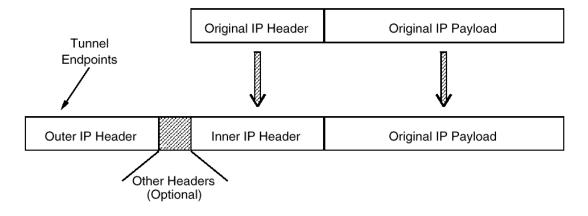
- Mobile Node sends Registration Request as home network directed broadcast (networkprefix.11111...1)
- Home Agents reply with a negative Registration Reply (registration denied)
- Mobile Node learns Home Agent address from the reply, and initiates a registration

3 Parts of Mobile IP

- Advertising Care-of Addresses
- Registration
- Tunneling

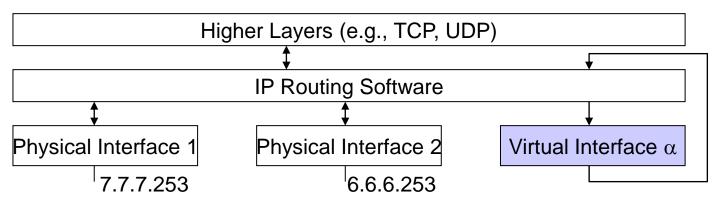
Tunneling

- Packet destined to the mobile node are routed to the home network (normal IP operation)
- Home Agent intercepts packets on the home network
- Home Agent encapsulates packets, and tunnels them to the care-of address
- At the care-of address (either Foreign Agent or co-located, the packet is decapsulated, and delivered to the mobile node

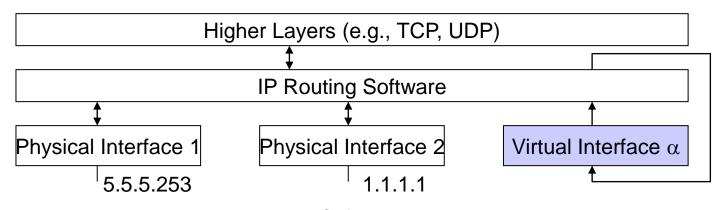

Packet Interception by Home Agent

- Advertise reachability of Mobile Node Home Address
- Proxy and Gratuitous ARP:
 - Home Agent Replies to ARP requests for the Mobile Node (Proxy ARP)
 - The Home Agent (or Mobile Node) Broadcast a not requested ARP after a change has occurred (Mobile Node has roamed out (or in)) (Gratuitous ARP)

Tunneling


- Home agent tunnels (encapsulates) packets to care-of address
- Tunnel source is the home agent's address
- Tunnel destination is the care-of address
- IP within IP (other ways exist):

Encapsulation Implementation (HA)

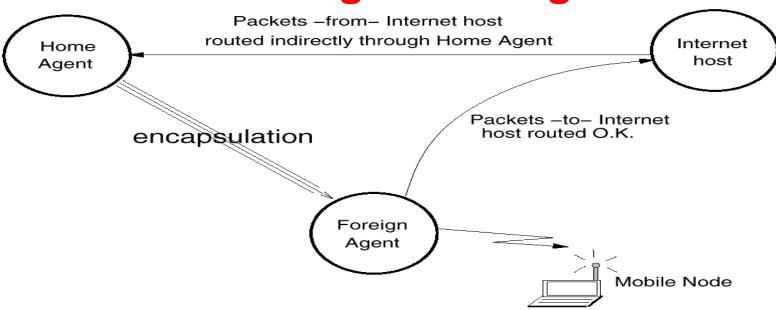

Target	Prefix Length	Next Hop	Interface
7.7.7 .0	24	"Direct"	1
default	0	6.6.6.254	2
7.7.7.1 (MN Home Address)	32	1.1.1.1 MN Care-of Address) α

Decapsulation Implementation (FA)

Target	Prefix Length	Next Hop	Interface
5.5.5 .0	24	"Direct"	1
1.1.1 .0	24	1.1.1.254	2
7.7.7.1 (MN Home Address)	32	"Direct"	1

Mobile Node sending packets

- Use Home Address as source address
- Exception: Ingress Filtering --> Reverse Tunneling
- Never send Home Address in ARP Request!



Router Selection by Mobile Node

- Use Foreign Agent
 - Use MAC Address from Advertisement
- Listen to Router Advertisements (No FA)
 - Use MAC Address from Advertisement
- Use DHCP / PPP IPCP (No FA, no Router Adv.)
 - Use ARP with Care-of Address as source address

Triangle Routing

Triangle routing is undesirable because

- home agent is the bottleneck
- more network load, and sensitivity to network partition
 In case of reverse tunneling, the situation is even worse
- ⇒ Route optimization: Get binding to the correspondent host

(Smooth) Handoff

- Mobile host moves along subnetworks, from FA to FA.
- Packets already in flight to old FA are lost after handoff to new FA
- Route optimization allows old FA to forward packets to new care-of address

Route Optimization (1)

Get binding to relevant correspondent hosts for optimal routing:

- binding warning (mobility agent → correspondent host)
- binding request (correspondent host → home agent)
- binding update (home agent → correspondent host)
- binding acknowledge (optional)

security association between correspondent host and home agent is needed for authentication

Route Optimization (2)

Get binding to old Foreign Agent for smooth handoff:

- previous foreign agent notification extension (mobile host → new FA)
- binding update (new FA → old FA)
- binding acknowledge (old FA → mobile host)
- mobile host and foreign agent need to exchange registration key for authentication
- last resort: special tunnel (old FA tunnels packet back to the HA)

Mobility for IPv6

- All nodes can handle bindings
 - No triangular routing
- Binding updates are carried in Destination Option
 - Small overhead for distributing bindings
- Mobile host can create its own care-of address using link-local address and automatic address configuration (combine advertised subnet prefix with own hardware address)
 - No need for foreign agent

Conclusion

- Mobile IP consists of 3 parts:
 - Advertising Care-of Addresses
 - Registration
 - Tunneling
- Mobility will be an important feature of the next generation Internet (Mobile Internet)
- Other solutions exist:
 - cellular solution (HLR / VLR)
 - application specific solutions (e.g., SIP)
 but Mobile IP provides global,
 application independent Internet mobility

Further reading

- http://www.ctit.utwente.nl/~heijenk
- "Mobile Networking Through Mobile IP"
 Tutorial by Charlie Perkins:
 http://computer.org/internet/v2n1/perkins.htM
- "Mobile IP, Design Principles and Practices" Book by Charles E. Perkins
- "Mobile IP, The Internet Unplugged" Book by James D. Solomon
- IETF Mobile IP WG: http://www.ietf.org/html.charters/mobileip-charter.html